case study

Switching Behavior Analysis and Propensity Scoring

Media & Entertainment

Business Impacts

Optimized

Ad campaigns

5x

Increase in Conversion Rate

Customer Key Facts

  • Location : Mountain View, California
  • Size : 201-500 employees
  • Industry : Media & Entertainment

Problem Context

The client, a TV data company, wanted to determine the switching pattern of viewers and identify users who have lapsed a particular show. They also wanted to assign a propensity score to each user having a higher tendency of watching a new show on TV to segment the group and target them efficiently.

Challenges

 

  • Inconsistent attribute details in the metadata
  • Multiple sources of data resulting in disparity in granularity

Technologies

Amazon S3

Amazon S3

Amazon SageMaker

Amazon SageMaker

Amazon Lambda

Amazon Lambda

Amazon Athena

Amazon Athena

Leveraging Statistical Analysis and ML-Driven Clustering for Switching Behavior Analysis and Propensity Scoring

Solution

Quantiphi leveraged Statistical Analysis and ML-driven clustering to generate insightful viewership patterns, understand switching behavior and viewership preferences. It helped the firm target the right set of audiences to optimize and improve the Ad campaign.

Result

Generation of Insightful viewership preferences in real-time leading to better campaign optimization

 

 

 

Start Your Next Gen AI Journey Today

Discover how Quantiphi’s AI-powered solutions can transform your business. Fill out the form, and we’ll help you explore tailored AI strategies to unlock new opportunities for growth.

Thank you for reaching out to us!

Our experts will be in touch with you shortly.

In the meantime, explore our insightful blogs and case studies.

Something went wrong!

Please try it again.

Share